

Int

COmmunity-Based Organized Littering
PRIN: PROGETTI DI RICERCA DI RILEVANTE
INTERESSE NAZIONALE
Bando 2022 PNRR

Deliverable D1.2
A Lightweight model for waste recognition, volume
estimation, and material segmentation, together
with the labeled dataset collected by the
community

https://prin-cobol.github.io

https://cobol.github.io

Project Number : P20224K9EK
Project Title : COBOL: COmmunity-Based Organized Littering

Deliverable Number : D1.2
Title of Deliverable : A Lightweight model for waste recognition, volume

estimation, and material segmentation, together with the
labeled dataset collected by the community

Nature of Deliverable : Report / Other
Dissemination level : Public
License : Creative Commons Attribution 3.0 License
Version : 1.0
Contractual Delivery Date : M12
Contributing Objective/Task : O1
Editor(s) : Leonardo Mariani (UNIMIB)
Author(s) : Luciano Baresi (PoliMI), Simone Bianco (UniMIB),

Amleto Di Salle (GSSI), Ludovico Iovino (GSSI), Daniela
Micucci (UniMIB), Leonardo Mariani (UniMIB), Luciana
Brasil Rebelo dos Santos (GSSI), Maria Teresa Rossi
(UniMIB), Raimondo Schettini (UniMIB)

COBOL
Grant agreement no: P20224K9EK 1

http://creativecommons.org/licenses/by/3.0/

Glossary, acronyms & abbreviations

Item Description
COBOL COmmunity-Based Organized Littering
CRUD Create, Read, Update, Delete

COBOL
Grant agreement no: P20224K9EK 2

Table of Contents

1 Introduction... 4
2 The lightweight model for waste recognition... 5
3 The collected dataset..6
4 Results... 7
5 Conclusions and remarks.. 7
6 References... 8

COBOL
Grant agreement no: P20224K9EK 3

1 Introduction
Littering is a growing problem that afflicts many cities and communities around the world.
The improper disposal of waste contributes to pollution, harms wildlife, and degrades natural
landscapes.
Automatic litter detection, thanks to its ability to identify waste in various environments
quickly and accurately, can provide continuous monitoring, cover larger areas, and reduce
the reliance on human resources. These advantages make automatic litter detection an
essential component of modern waste management strategies.
One of the most promising approaches to achieving comprehensive and detailed surveys for
litter detection is through the collective efforts of citizen science. Citizen science involves the
participation of volunteers from the general public in scientific research activities, leveraging
their collective power to gather data over vast areas and time periods. With the widespread
availability of smartphones, citizen scientists can now use their devices to capture images
and report instances of litter, providing valuable data for environmental monitoring.
We started developing the litter detector using a dataset in state of the art, and in the
meantime acquiring our own dataset.
Among the different existing datasets, the TACO (Trash Annotations in Context) dataset is
one of the best ones publicly available for waste detection, as it contains realistic scenarios
with a wide variety of waste thus permitting the training of litter detection models able to
operate on images in the wild, i.e. with uncontrolled acquisition conditions.
Good performance has been reported on the TACO dataset, but they are achieved by large
models as for example YOLO-v5x with a model size of more than 170 MB, making difficult its
deployment on edge devices with limited computational resources as for example low- and
mid-range smartphones.
In this deliverable we propose to tackle the automatic litter detection problem using the
lightest object detection models currently available in the state of the art: YOLO-v5 and
YOLO-v8 considering only the tiny and small variants. The challenge is to train these models
trying to obtain the best possible performance on the TACO dataset, and compare them with
the results in the state of the art.
The trained models are then compressed with different quantization levels, as for example
half precision FP16 and INT8 quantization to investigate the trade-off between model size
and detection performance.
On the same dataset we also performed the task of material segmentation, while for volume
estimation a new dataset named UniMiB Trash dataset has been collected and carefully
annotated.

COBOL
Grant agreement no: P20224K9EK 4

2 The lightweight model for waste recognition
In this work we experiment with the YOLO object detector. The name YOLO, which stands
for “You Only Look Once”, is a state-of-the-art, real-time object detection algorithm,
introduced in 2015 [Redmon2016look]. YOLO belongs to the category of one-stage
detectors [Zou2023object] and spatially separates bounding boxes and associates
probabilities to each of the detected objects using a single pass over the input image with a
Convolutional Neural Network (CNN).
In this work we consider its most popular versions, implemented in the Ultralytics library, i.e.,
YOLO-v5 [yolov5_ultralytics] and YOLO-v8 [yolov8_ultralytics], focusing in particular on the
tiny and small models. Both YOLO-v5 and YOLO-v8 use input images of size 640x640, while
a variant of YOLO-v5, available in both tiny (YOLO-v5n6u) and small (YOLO-v5s6u) model
sizes, uses input images of size 1280x1280.
All the methods are trained with the same default hyperparameters for a total of 100 epochs,
with automatic batch size selection, and automatic optimizer selection. Three additional
image augmentations are added to the default ones:

- flipud that flips the image upside down with the specified 0.5 probability
- degrees that rotates the image randomly within the specified [-10, 10] degrees range
- copy_paste that copies objects from one image and pastes them onto another,

resulting particularly useful for increasing object instances and learning object
occlusion.

Once the training of a model is complete, as a further optimization we tune the confidence
threshold conf, which is responsible for discarding the detections having an associated
confidence score lower than its value.
In order to qualitatively evaluate the effect of this tuning, we report in the following figure the
detections returned by YOLO-v5s on a couple of TACO images with the default confidence
(i.e., conf=0.001) and with the confidence set at 0.5.

COBOL
Grant agreement no: P20224K9EK 5

From the examples reported it is possible to notice how the default confidence value tends to
increase the number of false positives, while the increased confidence maintains only the
most precise detections.
Concerning the confidence threshold tuning, the optimization of its value is carried out on the
validation set by choosing the threshold value in the set 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.95 the one resulting in the highest mAP50.

COBOL
Grant agreement no: P20224K9EK 6

3 The collected dataset
The need to collect a dataset from scratch comes due to several reasons, which don't allow
to build a strong Deep Learning model to detect litter in the wild, and especially trying to
create an object detection that would be effective in a multi class problem.

We report below the reasons for collecting a new dataset:

- Insufficient images in existing datasets: The number of images in the considered
datasets is quite limited for Deep Learning models: TACO and PlastOPol contain only
1,500 and 2418 images respectively. Combining the datasets would result in a total of
3,918 images, which is still not a substantial amount.

- Realistic scenarios only: in existing datasets, some images do not actually depict litter
in real-world conditions. While the objects themselves could potentially be the same,
the complexity of real-world scenarios is entirely absent—factors such as possible
occlusions (plants, leaves, other waste), deterioration, lighting conditions, and
background variability are excluded. Given that the number of images is already
limited, the presence of unrealistic examples further reduces the usefulness of the
datasets.

- Prevalence of single or limited waste scenarios: The complexity of TACO, lies in the
fact that the objects to be detected are often very small. Although this realism can be
beneficial — and sometimes even excessive — it is not sufficient on its own to fully
represent the complexity of the real world. Typically, only one or a few pieces of litter
are present in a single image, whereas many real-world reports may involve piles of
waste resembling illegal dumps.

The following is a detailed description of all the steps involved in the dataset collection
process. A free tool from Roboflow's platform was used to support each step.

Collecting Images

Collecting images is the first and fundamental step in building the dataset. Being a human
task, it is time-consuming and costly. The images should come from various sources, such
as low-end and high-end smartphones, to make the dataset more heterogeneous.
Additionally, they should be captured by different people in different places to ensure a
variety of framing and scenarios, enabling Deep Learning models to be trained and tested in
a real context.
The dataset is collected by ten people, each with their own devices. The majority of the
photos were taken in the Milan hinterland, encompassing both urban and rural settings, from
the countryside to rivers.

Data Quality Control

The second task is also manual, as the images must be carefully reviewed to ensure they
contain truly abandoned waste in nature. Images featuring waste that is not truly abandoned,
or those that capture the same litter from multiple angles, should be excluded.
Regarding qualitative factors such as blurring, resolution or lighting conditions, a certain
degree of flexibility is needed to create a realistic and heterogeneous dataset, provided the
images are not excessively compromised.

COBOL
Grant agreement no: P20224K9EK 7

This process is critical to the dataset's success, demanding careful time and attention to
prevent the inclusion of duplicate, unsuitable or compromised images.

Annotation Process

After collecting the images, a hybrid task is performed using the annotation tool available on
the Roboflow platform. A human annotator decides what and how to annotate, using the
Segment Anything Model (SAM) to support and improve the segmentation process of the
litter. The decision is made to annotate the images with polygons rather than bounding
boxes, as this allows the dataset to be used by both segmentation and detection models.
While polygons can be easily converted into bounding boxes, the reverse is not possible.
In this annotation process, each instance is also assigned a class label. Four class types are
defined: micro, small, medium, and large. The classification is based on the physical size of
the waste rather than its type. For the deep learning model, this presents a challenge as it
must recognize the class of the waste based solely on its size, independent of the image
scale.
The small class includes objects like common plastic, glass bottles and cigarette packs. The
medium class is assigned to items such as shopping bags or normal garbage bags. The
large class includes objects like large garbage bags, as well as various large objects (e.g.,
metal sheets, iron objects, mattresses, etc.). The micro class includes very tiny objects,
which are not considered essential for achieving the main goal. Cigarettes are the most
common examples, along with small plastic items, candy wrappers, and others. Detecting
these tiny objects would require larger (and slower) Deep Learning models, but this is not a
critical goal; detecting objects of significant size is more important than merely identifying
cigarettes. However, this class is included in the dataset to evaluate the performance of the
current state-of-the-art models and to allow future use when hopefully better models can
detect these smaller items.

Dataset obtained

The UniMiB Trash dataset comprises 1,232 annotated high resolution images. UniMiB Trash
includes a total of 6,289 instances, with an average of about 5.1 annotations per image.
These annotations are available in YOLO format as polygons, which facilitates both
segmentation and detection tasks. Compared to the TACO and PlastOPol datasets, the
number of annotations per image in the UniMiB dataset is significantly higher. The litter
instances are segmented and labeled using four different classes, which are categorized not
by the type of litter but rather by size. This approach avoids the challenges associated with
having either too many poorly represented classes or too few classes with excessive
intra-class heterogeneity.

The distribution of images across the classes in the UniMiB Trash dataset is unbalanced, as
illustrated in the following figure.

COBOL
Grant agreement no: P20224K9EK 8

This imbalance reflects the realities of image acquisition, and one of the primary objectives is
to address and expand upon this reality. An object's classification is invariant to its scale; for
instance, a sofa is classified as large regardless of whether it occupies less than 100 pixels
or dominates the entire image.
Similarly, a cigarette will always be categorized as micro, regardless of whether it appears
prominently or minimally within the frame. The following figure presents the size of the
bounding boxes in the dataset, categorized by class.

The class micro is added for completeness and correctness, as this type of waste is
unfortunately very present and potentially useful outside of this task. However, for the
ultimate goals of this project, detecting an abandoned sofa or rubbish bags is definitely more
significant than detecting a candy wrapper.
The UniMiB Trash dataset is currently the only dataset that offers a classification of waste
instances based on size. This information, which can be relatively easier to capture than the
type of waste, could be of great help in the final task, as it could provide useful information
for prioritising the waste to be disposed of.

COBOL
Grant agreement no: P20224K9EK 9

4 Results

Waste recognition on TACO dataset

In this project, only the most popular versions of YOLO implement implemented by Ultralytics
library are considered, i.e., YOLO-v5 [yolov5_ultralytics] and YOLO-v8 [yolov8_ultralytics],
focusing on the tiny and small models. The dataset used for waste recognition is TACO-1,
i.e. the TACO version where only two classes are available: litter and no litter.
The training trend is illustrated in the following figure, which shows two examples of YOLO
v8 nano training, respectively for a total of 100 and 300 epochs.

A total of 100 epochs is sufficient to achieve maximum performance with all models. As the
epochs increase, the training trend of YOLO appears to flatten, reaching similar performance
levels to those achieved in fewer epochs. Regarding the validation set, a noticeable drop in

COBOL
Grant agreement no: P20224K9EK 10

the slope of all curves can be observed in the second half of each validation plot. This
means that the model has achieved its best possible performance on the validation set.
Continuing training would likely lead to the phenomenon of overfitting, where performance
improves on the training set while remaining about the same on the validation set.
Tuning of the hyperparameters conf and IoU as in [Bianco2024efficient], is performed on the
validation set. Then, the confidence and IoU of the best evaluated results are used as
parameters on the test set. The goal is to develop recall-oriented models rather than
precision-oriented ones, placing greater emphasis on recall while still trying to balance
performance as best as possible.
The confidence parameter primarily enhances precision, and at lower values, it does not
significantly impact recall. As a result, the mAP50 and mAP50-95 can increase by more than
10 percentage points. Tuning the IoU parameter is particularly useful for balancing
performance in terms of recall and precision; typically, it allows for an increase in the
confidence parameter without compromising recall or even improving it.
The results of the several models on the test set are presented in the following table.

The tuning of the confidence parameter is very surprising: a general increase of 10% in
terms of mAP50 and mAP50-95 is observed.
In this context, the performance of the other YOLO v5x models are achieved by a YOLO v5
or v8 nano - YOLO v5x is 20x larger than a nano model.
Our YOLO v5s outperforms the others YOLO v5s [Cordova2022litter] [Das2023outdoor] by
10% in terms of mAP50 and mAP50-95. Unfortunately, the data provided by the other papers
are incomplete and not comparable in terms of recall and precision, so only an internal
comparison was made.
YOLO v8 nano and small models benefit the most from tuning the Confidence and IoU
thresholds, achieving an approximately 10% increase in performance without a decrease in
recall.
YOLO v5s6u can be considered the best model overall, as it excels in object detection due
to its higher recall and mAP50, although the increase recorded with tuning is not very
substantial.
YOLO v5n6u represents the best balanced model: it is only slightly heavier than the nano
models yet demonstrates performance similar to the larger YOLO v5s6u, particularly in terms
of recall and mAP50, with an even greater mAP50-95. The small versions of YOLO v5 and
v8 are more precise, but the benefits they provide are not significant enough to meet the
primary objectives.

COBOL
Grant agreement no: P20224K9EK 11

To better understand the differences in model size, the following figure illustrates the
substantial performance gap between the models and the state of the art, highlighting how
better performance can be achieved with significantly lighter models.

For an internal comparison of the models used, the following figure clearly illustrates their
ability to run on devices with low computational capabilities.

COBOL
Grant agreement no: P20224K9EK 12

YOLO v5n6u and v5s6u have longer inference speeds, primarily due to the input image size
being twice the standard size. At the same time, the size difference between the Nano and
Small model versions is visible, impacting the storage space required on the final device.
However, in both cases, the models are suitable for embedded devices like smartphones.
The YOLO v5s6u, could be considered borderline for this application, especially since its
performance does not significantly surpass that of its competitors to justify the increased
resource requirements.
Since our final goal is to run the trained models on edge devices, as a final step we
converted our PyTorch models into TensorFlow Lite format with different quantizations and
measuring the final model size as well as its performance on the TACO-1 task.
The experimental results are reported in the following table.

COBOL
Grant agreement no: P20224K9EK 13

The different post-training quantization schemes here considered range from a simple
conversion of the model into TFLite file as full-precision floating point (float32.tflite) to
half-precision floating point (float16.tflite), from the quantization as 8-bit integers of only the
weights of the model (integer_quant.tflite) also exploiting Dynamic Range Quantization
(int8.tflite), to the quantization as 8-bit integers of both the weights and the activations
(full_integer_quant.tflite).
From the results reported in the previous table we can observe how if the inference has to be
done on an edge TPU (e.g., Google Coral) where a full integer quantization of both weights
is required, we can obtain a model that on average is about 50% of the original model with
an average reduction in mAP50 of about 6.8%. Instead, if the edge device has a GPU that
can be used for inference (e.g., ARM Mali, Qualcomm Adreno, etc.), a FP16 quantized
model permits to limit the average degradation in mAP50 to just 0.4% at the cost of a model
having the same size as the original one.

Volume estimation on the UniMiB Trash dataset

This project also aims to explore whether the task can be approached in a multiclass
context, providing additional information beyond the number of waste items detected. For
example, the priority may differ significantly if there are 10 large rubbish bags in an image
compared to 10 cigarette butts. To address this, an effort is made to categorize waste based

COBOL
Grant agreement no: P20224K9EK 14

on size: large, medium, small, and micro, with the last included for dataset completeness,
despite being of lesser relevance.
The UniMiB Trash dataset is initially partitioned with an 80-20% split between training and
testing, and the training set is further divided into 70% for training and 10% for validation.
Class balance is maintained across all partitions to ensure a fair distribution of samples.
The model training setup follows the standard YOLO configuration, with the only difference
being an increased total number of epochs to 300. It was observed that, compared to using
fewer epochs, the models become more recall oriented and more resistant to increases in
the confidence parameter for threshold tuning, probably due to the ability to predict with
higher confidence scores. Some training results are shown in the following figure.

Results on the test are shown in the following table.

COBOL
Grant agreement no: P20224K9EK 15

Considering that the dataset is not very large, with just over 1,200 images, and exhibits
significant class imbalance, the performance is reasonable and roughly comparable to that of
the 1-class TACO dataset.
Additionally, the micro class occasionally contributes to lower overall performance, although
it is not a primary focus for this task. Anyway, the results for the micro class are much better
with YOLO v5n6u and v5s6u compared to the other models, due to the double resolution of
the input images.
The small class generally achieves robust performance on all models, the medium class is
the one on which we need to look for more work.
With a higher number of classes, tuning the Confidence and IoU thresholds becomes more
challenging. As shown in the following figure, detecting the micro class is particularly difficult
for YOLO models when dealing with such small objects. However, this is not the case for
YOLO v5s6u (center plot), which performs significantly better and demonstrates good
performance, likely due to the higher resolution of the input images.

COBOL
Grant agreement no: P20224K9EK 16

The confusion matrices shown in the following figure facilitate the analysis of predictions on
a class-by-class basis, revealing potential issues.

COBOL
Grant agreement no: P20224K9EK 17

The challenges with the micro class arise from non-detections instead of a poor separation
between classes, because many micro instances are not detected rather than classified into
other categories.
Specifically, for YOLO v5s6u (in the upper part of the previous figure), 55% of instances are
accurately identified and classified; only 9% are misclassified as small, while 36% remain
unidentified. Additionally, there are numerous erroneous predictions of background elements
being classified as micro instances. This distinction is further supported by the observation
that only 7% of small instances are misclassified as micro. Conversely, the detection rates
for large and medium classes are more favorable; for example, only 14% of large instances
are not detected. However, 41% of the detected large instances are misclassified as
medium. In the medium class, instances are typically not confused with the large class, but
36% are misclassified as small. Very few background instances are misclassified as large
(3%) or medium (8%). The small class, which is the most prevalent, exhibits strong
performance, demonstrating effective separation from the other classes and relatively low
misclassification rates (16%).
The previous results are further confirmed by analysing the performance of YOLO v8s (in the
bottom part of the previous figure). However, it is important to note that this model exhibits
significantly lower detection capacity for instances across each class compared to YOLO
v5s6u. Specifically, there is a detection gap of 5% in the medium class and a striking 26% in
the micro class, highlighting a notable decline in performance.
Although the micro class's results are less favorable, it's worth mentioning that this class
holds relatively minor importance for the overarching objectives of the study. Furthermore,
the number of True Positives has also decreased in the large class, with a reduction of 18%,
and in the medium class, which has decreased by 15%. Conversely, the small class shows a
much smaller decline of only 4%.
In terms of classification capabilities, the models exhibit roughly similar performance, though
with a slight overall decrease in effectiveness. Additionally, there has been an increase in the
misclassification rates, with large instances being incorrectly classified as medium by 4%,
and medium instances misclassified as small by 10%. This misclassification trend is
concerning, as it can lead to misunderstandings of the data. Moreover, the instances
predicted as small that are confused with the background have increased by 16%. In
contrast, the micro class has seen a decrease in misclassification, which can be attributed to
the model's reduced ability to predict instances of this class accurately.
Therefore, it is essential to closely examine the differences between the two models using
the Confusion Matrix. The utilization of YOLO v5s6u, which processes images at a resolution
of 1280 pixels, does not merely enhance the performance of the litter class. It also
contributes to a more robust overall detection capacity for the other classes. This
improvement is reflected in the superior classification abilities across all four classes in the
dataset, particularly for larger waste items. The findings suggest that using higher-resolution
input images can significantly benefit the model's performance, facilitating more accurate
object detection and classification.

Material segmentation on TACO dataset

The TACO dataset is distributed with the annotation of 60 different waste categories. Due to
the difficulty posed by the extremely unbalanced classes, researchers have usually used
TACO-1 (i.e., all 60 classes are merged to a single class representing litter), or TACO-10
where litters are grouped in ten macro categories depending on the litter type. This version

COBOL
Grant agreement no: P20224K9EK 18

has the disadvantage that for example glass bottles and plastic bottles are merged together
in the macro class bottle, therefore losing the material information.
Since we are interested in the litter material instead, we experiment with the original TACO.
The training plots of YOLO v5s6u are reported in the figure below.

The trained detector is able to reach a mAP50 of 28.6, while the only other result reported in
the literature is 25.5 from [Das2023outdoor].
In the following figure we also report the recall-confidence plot, from which it is possible to
see that some categories are not detected, mainly due to the fact that very few examples are
available.

COBOL
Grant agreement no: P20224K9EK 19

5 Conclusions and remarks

This deliverable presents the outcomes of developing and evaluating lightweight models for
waste recognition, volume estimation, and material segmentation in the context of the
COBOL project. The key achievements and insights can be summarized as follows:

1. Lightweight Model Development:
○ By employing YOLO-v5 and YOLO-v8 models, focusing on their tiny and small

variants, we achieved competitive performance on the TACO dataset. These
models balance detection accuracy and resource efficiency, making them
suitable for deployment on edge devices such as smartphones and embedded
systems.

○ Fine-tuning hyperparameters, particularly confidence and IoU thresholds,
resulted in substantial improvements in performance, highlighting the
importance of post-training optimization for lightweight models.

2. Dataset Contributions:
○ The UniMiB Trash dataset was collected and annotated, emphasizing

size-based categorization to prioritize waste of varying significance. With over
1,200 high-resolution images and more than 6,000 annotated instances, the
dataset provides a unique resource for evaluating waste detection models
under realistic conditions.

○ The dataset’s focus on abandoned waste in natural settings and its inclusion of
complex scenarios ensures its applicability to real-world challenges.

3. Evaluation and Results:
○ The YOLO-v5s6u model emerged as the best-performing lightweight detector,

achieving high mAP scores and recall rates while maintaining a balance
between precision and inference speed.

○ Quantization techniques, including FP16 and INT8, further reduced model
sizes, making deployment on edge TPU and GPU devices feasible without
significant degradation in detection performance.

4. Insights from Volume Estimation and Material Segmentation:
○ Initial efforts in volume estimation demonstrated the potential to prioritize waste

types based on size, enhancing the utility of waste detection systems in urban
and rural environments.

○ Material segmentation on the TACO dataset achieved promising results,
surpassing previous benchmarks, despite the challenges posed by imbalanced
class distributions.

COBOL
Grant agreement no: P20224K9EK 20

6 References

[Bianco2024efficient] Bianco, S., Gaviraghi, E., & Schettini, R. (2024, September). Efficient
Deep Learning Models for Litter Detection in the Wild. In 2024 IEEE 8th Forum on Research
and Technologies for Society and Industry Innovation (RTSI) (pp. 601-606). IEEE.
[Cordova2022litter] Córdova, M., Pinto, A., Hellevik, C. C., Alaliyat, S. A. A., Hameed, I. A.,
Pedrini, H., & Torres, R. D. S. (2022). Litter detection with deep learning: A comparative
study. Sensors, 22(2), 548.
[Das2023outdoor] Das, D., Deb, K., Sayeed, T., Dhar, P. K., & Shimamura, T. (2023).
Outdoor Trash Detection in Natural Environment Using a Deep Learning Model. IEEE
Access.
[Redmon2016look] Redmon, J. (2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition.
[yolov5_ultralytics] Jocher, G. (2020). YOLOv5 by Ultralytics. 2020. URL https://github.
com/ultralytics/yolov5.
[yolov8_ultralytics] Jocher, G., Chaurasia, A., Qiu, J., (2023). YOLOv8 by Ultralytics. 2023.
URL https://github. com/ultralytics/ultralytics.
[Zou2023object] Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20
years: A survey. Proceedings of the IEEE, 111(3), 257-276.

COBOL
Grant agreement no: P20224K9EK 21

	1 Introduction
	2 The lightweight model for waste recognition
	3 The collected dataset
	Collecting Images
	Data Quality Control
	Annotation Process
	Dataset obtained

	4 Results
	Waste recognition on TACO dataset
	Volume estimation on the UniMiB Trash dataset
	Material segmentation on TACO dataset

	5 Conclusions and remarks
	6 References

