

Int

COmmunity-Based Organized Littering
PRIN: PROGETTI DI RICERCA DI RILEVANTE
INTERESSE NAZIONALE
Bando 2022 PNRR

Deliverable D6.1
A decentralized, trusted framework inspired by federated
and peer-to-peer systems, with proper APIs/connectors
for the proficient use of the solution

https://prin-cobol.github.io

https://cobol.github.io

Project Number : P20224K9EK
Project Title : COBOL: COmmunity-Based Organized Littering

Deliverable Number : D6.1
Title of Deliverable : A decentralized, trusted framework inspired by federated

and peer-to-peer systems, with proper APIs/connectors
for the proficient use of the solution

Nature of Deliverable : Report / Other
Dissemination level : Public
License : Creative Commons Attribution 3.0 License
Version : 1.0
Contractual Delivery Date : M12
Contributing Objective/Task : O6/Tx.y
Editor(s) : Leonardo Mariani (UNIMIB)
Author(s) : Luciano Baresi (PoliMI), Simone Bianco (UniMIB),

Amleto Di Salle (GSSI), Ludovico Iovino (GSSI), Daniela
Micucci (UniMIB), Leonardo Mariani (UniMIB), Luciana
Brasil Rebelo dos Santos (GSSI), Maria Teresa Rossi
(UniMIB), Raimondo Schettini (UniMIB)

COBOL
Grant agreement no: P20224K9EK 1

http://creativecommons.org/licenses/by/3.0/

Glossary, acronyms & abbreviations

Item Description
COBOL COmmunity-Based Organized Littering
FL Federated Learning
DNN Deep Neural Network
CNN Convolutional Neural Network

COBOL
Grant agreement no: P20224K9EK 2

Table of Contents

1 Introduction... 4
2 Federated Learning: Step-by-Step Overview... 6
3 Heterogeneity Management... 7

3.1 Types of Heterogeneity.. 7
3.2 Managing Data Distribution Heterogeneity.. 7
3.3 Addressing Model and Communication Heterogeneity..8

4 State of the Art.. 10
4.1 Fast Federated Learning 'FFL' (2021)... 10
4.2 Progressive Federated Learning ’ProgFed’ algorithm (2022).. 11

Feedforward Networks... 12
U-nets...12
Results and Impact.. 12

4.3 Cache-Enabled Federated Learning (CacheFL, 2023)..13
4.4 FedMDC: Multicenter Federated Learning with Model Decoupling... 14
4.5 FedGKD: Federated Global Knowledge Distillation... 15
4.6 Low Node Selection in Federated (LCNSFL, 2024)...16
4.7 Federated Learning with Adaptive Weighted Model Aggregation (FLAMA, 2023)...................18

5 Empirical Evaluation...20
5.1 Phase 1: Design of Experiments..20
5.2 Phase 1: Results..20
5.3 Phase 2: Design of Experiments..22
5.4 Phase 2: Results..23
5.5 Phase 3: Design of Experiments..24
5.6 Phase 3: Results..24

6 Selecting the Right Federated Learning Approach..26
8 Conclusion.. 28
7 References... 30

COBOL
Grant agreement no: P20224K9EK 3

1 Introduction
This document addresses the problem of conceiving a decentralized, trusted framework for
the proficient use of the Cobol solution. The main contribution of the document is towards the
adoption of Federated (machine) Learning (FL) to allow for the proper consumption of the
garbage images provided by users.
In general, one can think of a solution in which users provide garbage-related pictures
through their devices. Given the distributed nature of the context behind Cobol, a single
centralized solution to analyze these data does not pay off. We need to envision a
framework that can better adapt to the distributed nature of the problem and that also allows
for flexibility and (future) extensibility. This is why Cobol has been working on the idea of
adopting FL solutions to carry out the task, and compare them against more “standard”,
centralized options.
The adoption of a distributed solution is also a means to respect the privacy of data
generators, that is, of the users who provide garbage pictures and also to address possible
communication bottlenecks. The adoption of users' devices as the nodes of the federation
would give the best solution for privacy preservation, but the distribution would be excessive
and each node (user) would probably not contribute enough artifacts (images) to allow for
proper local training. The federation would become too wide and too distributed, and we may
also have problems with proper training on mobile devices. The adoption of intermediary
nodes is a compromise that can help address both issues. The pictures are sent “only” to the
trusted nodes, which act as concentrators and can carry out proper “localized” training.
Users' devices are relieved from energy-eager activities, and we do not need to make
training work on diverse mobile architectures.
For the sake of standardization and also to get well-defined APIs almost free, we
investigated the use of existing FL frameworks instead of developing a new hybrid solution.
Some preliminary experiments suggested the use of Flower1 as the basis for the foreseen
solution. The framework is widely used, comes with a well-crafted architecture, is supported
by a big community, and is actively maintained: these are all fundamental elements for the
sustainability of Cobol.
Flower was also very helpful for carrying out the experiments, as it offered a simple, and
easy to use and extend, sandbox to execute our experiments. Our main interest thus has
been the study of different existing FL algorithms to select the nodes of the federation given
the different requirements at hand. In general, the interest refers to the problem of managing
heterogeneity in federated learning. Although it is clear that COBOL foresees a standard and
static infrastructure, we wanted to study and compare the different existing solutions to have
a complete landscape of the alternatives and be able to envision a preliminary decision tree
that can help COBOL, but can also have wider applicability.
This is the main part of the document. We started with some simple solutions and a simple
dataset, and continue with more advanced and recent solutions and more appropriate
datasets. As mentioned above, we also wanted to study the differences between centralized
and distributed (federated) solutions, and we did this exercise with the garbage dataset
contributed by the project itself and pave the ground for realistic evaluations that can be
used in the context of the project.
The rest of the document is organized as follows:

● Section 2 provides an overview of the FL process;
● Section 3 details the issue of heterogeneity management;

1 https://flower.ai

COBOL
Grant agreement no: P20224K9EK 4

https://flower.ai

● Section 4 surveys state-of-the-art FL algorithms;
● Section 5 reports on our experimental campaign;
● Section 6 presents a decision-support tree to select a FL solution;
● Section 7 concludes.

COBOL
Grant agreement no: P20224K9EK 5

2 Federated Learning: Step-by-Step Overview

FL is a machine learning framework addressing, among others, the challenge of data privacy
by allowing collaborative model training across multiple devices. This approach enables
participants to construct a common (global) machine learning model without sharing data
among themselves or with the server, leading to a data privacy preserving algorithm.
Instead, their devices locally process the data, compute updates, and only send the model
updates to a central server, ensuring that personal photos never leave the user’s device.
This privacy reserving approach is crucial in fostering user trust and increasing engagement
within the community. When participants feel assured that their data remains private, they
are more likely to participate by uploading photos of littered areas, enriching the data set,
and improving the model performance.
McMahan et al. [1] introduced the concept of Federated Learning. It was developed to
improve the performance of data-driven models under the constraints of data privacy laws,
which cannot be preserved in typical centralized machine learning setups. The initial
motivation was to enable smart edge devices, like mobile phones, to collaboratively learn a
global prediction model while keeping all training data on the same device.

Figure 1. FL process overview.[2]

The steps of the baseline federated algorithm (FedAVG) as explained by [1] are shown in
Figure 1 and summarised in the following:

1. Sending models (or model updates): the server shares an initial model (which can
be empty) with a fraction of nodes (step 3 in Figure 1).

2. Updating models: a model is trained locally on multiple nodes (step 4 in Figure 1).
Each node processes its own data locally to update the model’s parameters.

3. Sending encrypted gradients: after local training, only the model updates (weights
or gradients) are sent back to the server (step 1 in Figure 1).

4. Secure aggregation: the server aggregates these updates to improve the global
model, which is then sent back to the nodes for further training.

The process of local training, model aggregation, and redistribution of the updated model
continues across several rounds, enhancing the model’s accuracy with each iteration.

COBOL
Grant agreement no: P20224K9EK 6

3 Heterogeneity Management

FL introduces significant challenges due to the inherent heterogeneity of its decentralized
architecture. This heterogeneity appears across various dimensions, which complicates the
training and efficiency of federated models.

3.1 Types of Heterogeneity

In FL systems, we have many types of heterogeneity, Ye et al. [3] described some of these
types:

● Statistical Heterogeneity: The data distribution across nodes is often
Non-Independently and Identically (Non-IID), leading to divergent model updates and
impacting overall model accuracy. This inconsistency can cause models to forget
what they have already learned or not be able to learn some patterns (rare samples in
a passive node). Addressing this is crucial for optimizing the performance and
efficiency of federated learning systems.

● Communication Heterogeneity: Variability in network environments affects
communication efficiency. Nodes with slower connections may significantly delay the
aggregation process, sometimes leading to the discarding of model updates from
these nodes. Employing strategies to manage this heterogeneity ensures the
continuity and efficiency of the global model training, and ensures the participating of
all the possible nodes.

● Device Heterogeneity: Differences in computational power and storage among
devices can lead to uneven training times and updates. This often results in a training
bottleneck, where slower devices delay the overall training process, highlighting the
need for scalable and adaptive federated learning solutions.

● Model Heterogeneity: Nodes may use models of differing complexities to suit local
computational capabilities or specific tasks, which will force flexible aggregation
methods that can handle diverse model architectures. The aggregation process must
be adaptive to the model’s complexity and the nature of the data processed, ensuring
that federated learning can be made more robust and scalable.

3.2 Managing Data Distribution Heterogeneity

The primary concern in FL, particularly from a data perspective, is the non-IID nature of data
across different clients. Techniques to manage this include:

● Node Selection Strategies: Usually, the server chooses randomly a fraction of nodes
to train the model locally at each round, some research shows that there are more
effective ways to make this selection to overcome the problem of static heterogeneity.

● Advanced Aggregation Algorithms: Employing sophisticated aggregation methods
that consider the amount and diversity of data each node contributes. This approach
helps in creating a more representative and effective global model, enhancing the
overall effectiveness of the learning process.

● Data Augmentation and Synthetic Data Generation: These techniques enhance
the representativeness and balance of the training data across nodes, helping to
mitigate the effects of skewed data distributions and ensuring that the benefits of
federated learning are fully realized.

COBOL
Grant agreement no: P20224K9EK 7

3.3 Addressing Model and Communication Heterogeneity

● Model Heterogeneity: To solve this problem, federated systems may incorporate
meta-learning or multi-model training approaches that allow for personalized training
while still contributing to collective knowledge. This enables each node to develop a
model that is suitable to its specific data and computational context, thereby
enhancing the adaptability and flexibility of the federated learning model.

● Communication Heterogeneity: Strategies such as asynchronous updates and
differential synchronization can be employed to ensure that slower nodes do not
unnecessarily delay the learning process. These methods allow nodes to contribute
updates based on their individual communication capabilities, thus maintaining the
continuity and efficiency of the global model training

COBOL
Grant agreement no: P20224K9EK 8

COBOL
Grant agreement no: P20224K9EK 9

4 State of the Art

Recent advancements in federated learning algorithms focus on optimizing communication
and computation costs, managing heterogeneity, and enhancing model performance under
various constraints. This section reviews several notable algorithms that represent the
current state of the art in federated learning, detailing their approaches and contributions to
the field.
4.1 Fast Federated Learning 'FFL' (2021)

FFL, or Fast Federated Learning [4], optimizes the federated learning process by
dynamically balancing trade-offs between communication and computation and between
communication and accuracy. It achieves this through innovative techniques like gradient
compression and control over local updates, designed to speed up convergence while
maintaining high accuracy.

A key contribution of FFL is its ability to minimize the upper bound of the error during each
training round by jointly and dynamically adjusting the local iteration count and the gradient
compression factor. The error bound for the k-th round is defined as follows:

Where:

COBOL
Grant agreement no: P20224K9EK 10

FFL particularly works best in environments where communication costs are a primary
concern, making it highly suitable for large-scale privacy-preserving machine learning
applications such as those involving IoT devices. This method addresses the critical
challenges of high communication overhead by efficiently managing gradient transmissions
and local updates, demonstrating superior performance in reducing data transfer costs
compared to traditional methods.

4.2 Progressive Federated Learning ’ProgFed’ algorithm (2022)

ProgFed [5] introduces a progressive training framework for federated learning which
reduces both computational and communication costs by incrementally increasing model
complexity during training. This innovative approach exploits the natural stabilization of
neural networks, starting with simpler, shallower submodels and gradually expanding to
full-complexity models. This progressive growth allows significant savings in computational
resources and communication overhead while maintaining high model performance.

ProgFed divides the model into multiple overlapping partitions, with each partition
corresponding to a stage of training. In each stage, a submodel, denoted as , is trained 𝑀𝑠
independently with local supervision. As training progresses, these submodels are expanded
into more complex models by incorporating additional layers or blocks. The training process
includes the following stages:

● Stage 1: Shallow Submodel Training
The initial submodel , consisting of the simplest blocks () and a lightweight head 𝑀1 𝐸1
(), is trained. This significantly reduces computation and communication costs, as 𝐺1
only a fraction of the total model parameters are involved.

● Stage 2 to : Progressive Growing 𝑆
At each subsequent stage sss, the current submodel incorporates additional 𝑀𝑠
blocks () and an updated head (). The weights of previously trained blocks are 𝐸𝑠 𝐺𝑠
reused, ensuring continuity and efficient knowledge transfer.

● Final Stage: Full Model Training
Once the network reaches its full complexity (), end-to-end training is performed to 𝑀𝑠
fine-tune all layers.

This approach is compatible with various federated learning optimizations, such as FedAvg
[1] and FedProx [6], and can be extended to both feedforward architectures and complex
models such as U-nets.

Figure 2. Progressive Growing in Feed-forward Networks: the model expands stage by stage until the full

model is achieved.

COBOL
Grant agreement no: P20224K9EK 11

Figure 3. Symmetric Progressive Growing in U-nets: Both encoder and decoder are grown outward until the

complete U-net model is trained.

Feedforward Networks

In feedforward networks, the network is progressively grown by training each submodel with
localized supervision provided by temporary heads. These temporary heads are discarded
once their corresponding stages are completed, and subsequent stages build upon the
pre-trained layers.

U-nets

For U-nets, ProgFed adopts a symmetric growing strategy, where both the encoder and
decoder are progressively expanded. Intermediate supervision is applied at each stage to
effectively guide the training process. This strategy is particularly beneficial for segmentation
tasks, where U-nets have demonstrated exceptional performance.

Results and Impact

ProgFed achieves significant savings in computational and communication costs without
sacrificing performance. Key benefits include:

● Up to 25% reduction in computation costs during classification tasks.
● Up to 63% savings in communication costs in segmentation tasks.
● Compatibility with existing compression techniques and federated optimizations.

This innovative framework demonstrates its suitability for resource-constrained federated
learning scenarios, such as IoT devices and medical imaging applications. Using the
principles of progressive learning, ProgFed offers a flexible and efficient alternative to
traditional federated learning approaches.

4.3 Cache-Enabled Federated Learning (CacheFL, 2023)

Liu et al. [7] introduced CacheFL which is a novel caching mechanism designed to enhance
the efficiency of federated learning systems by reducing the total wall-clock training time, a
critical metric in FL. Instead of requiring all clients to download the latest global model from
the central server in every iteration, CacheFL allows a subset of clients to utilize cached,
slightly old global models stored locally at edge devices or access points. This design
significantly reduces communication overhead, particularly for clients with limited bandwidth
or high communication latency.

COBOL
Grant agreement no: P20224K9EK 12

The main innovation of CacheFL lies in its flexible caching strategy, which partitions clients
into two groups: cache-enabled clients (K-cache), which use cached global models, and
server-dependent clients (K-server), which rely on the latest global model. This partitioning
mitigates the straggler effect, where slow clients delay the entire training process. By
enabling cache-enabled clients to begin their local updates earlier with cached models, the
per-iteration delay is reduced, thereby optimizing training efficiency.

The CacheFL training process extends the traditional FedAvg algorithm by incorporating
cache-enabled clients. As described in Algorithm 1, the initialization of the model for each
client is determined by their group: server-dependent clients initialize with the latest global
model, while cache-enabled clients use the previously cached global model. Local updates
are performed using stochastic gradient descent (SGD), and the global model is updated on
the server by aggregating the locally updated models.
Key characteristics of CacheFL include:
• Caching Strategy: The global model is stored in caches located at clients, access points,
or the server, depending on the network topology. Cached models are updated at regular
intervals, ensuring the upper limit of old models usage.
• Trade-Off Management: While caching introduces some staleness in global models, the
slight increase in the number of iterations is offset by the significant reduction in per-iteration
delay. CacheFL carefully balances this trade-off to minimize the total training time.
• Applicability: CacheFL is especially effective in scenarios with resource-constrained
networks and heterogeneous client capabilities, as it reduces communication and
computational overhead while maintaining convergence guarantees.
Experimental results demonstrate that CacheFL achieves up to a 28% reduction in the per
iteration delay compared to traditional FedAvg while maintaining competitive accuracy. This
makes CacheFL particularly suitable for federated learning scenarios with constrained
bandwidth and heterogeneous client environments.

COBOL
Grant agreement no: P20224K9EK 13

4.4 FedMDC: Multicenter Federated Learning with Model Decoupling

B. Wang et al. [8] address the challenges of data heterogeneity in federated learning by
implementing a model decoupling framework designed to enable personalized model training
while leveraging the advantages of a global model. FedMDC (the name of the new
algorithm) enhances the handling of non-IID (non-independent and identically distributed)
data across distributed clients by introducing a client clustering mechanism based on a
low-dimensional representation of their data. By grouping clients into clusters, FedMDC
creates local subglobal models, enabling better alignment with the statistical properties of the
data at each client.

Figure 4. The FedMDC framework: Stage one involves local feature extraction and aggregation, while stage

two clusters clients based on data similarity and trains sub-global models.

Framework Overview: The FedMDC framework operates in two key stages, as illustrated in
Figure 4:

• Stage One: Local End Pre-training. Clients locally pre-train feature extractors , , ... , 𝑃
1

𝑃
2

𝑃
𝑘

using their private datasets. These pre-trained feature representations are uploaded to the
server, where a global feature extractor is aggregated. This initial step reduces the
heterogeneity among clients while preparing their local models for clustering.
• Stage Two: Client Clustering and Submodel Training. Based on the uploaded feature
representations, the server clusters clients into groups with similar statistical data properties.
Each cluster trains a subglobal model tailored to its members. The server aggregates these
subglobal models into a unified global model by combining intermediate representations (, 𝑍

1
, ... ,). The resulting models are redistributed to clients for further refinement. Handling 𝑍

2
𝑍

𝑘
Non-IID Data: The clustering mechanism in FedMDC significantly mitigates the challenges
posed by non-IID data. By grouping clients with similar data distributions, the algorithm
ensures that local updates contribute more effectively to subglobal models. This decoupled
training strategy allows for the creation of personalized models that maximize the utility of
local data while maintaining compatibility with the global model.
Communication Overhead: FedMDC introduces additional communication overhead due to
the need for feature aggregation and client clustering. While this may increase
communication costs compared to traditional methods, the clustering process and the use of

COBOL
Grant agreement no: P20224K9EK 14

sub-global models offset these costs by significantly improving model convergence and
reducing the overall training time.

Applications and Benefits: FedMDC is particularly effective in environments requiring
personalized models, such as healthcare and IoT applications, where the data distributions
of the clients are highly variable. Experimental results demonstrate that FedMDC improves
the performance of local models by aligning them more closely with their respective data
distributions, achieving superior accuracy compared to baseline federated learning methods.

4.5 FedGKD: Federated Global Knowledge Distillation

FedGKD, or Federated Global Knowledge Distillation, addresses the challenge of client drift
in heterogeneous federated learning environments through a novel global knowledge
distillation approach [9]. By leveraging historical global models as teachers, FedGKD guides
the training of local models to better align with the global objective, thereby mitigating the
divergence caused by non-IID data distributions across clients. This innovative method
improves the convergence rate of the global model and maintains high accuracy and
robustness in federated settings characterized by significant data heterogeneity.
FedGKD employs an ensemble-based knowledge distillation mechanism. Historical global
models stored in the server buffer are aggregated to form an ensemble global model, which
serves as a guide for local training. In each communication round, the ensemble model is
broadcast to the participating clients. Clients utilize this ensemble model to refine their local
training through knowledge distillation, minimizing the discrepancy between the output of the
global ensemble model and the local models. This process ensures that local models
capture diverse features while adhering to the global learning objective.
Figure 5 provides an overview of the FedGKD system. The architecture consists of two main
stages:
1. Global Knowledge Ensemble: The server maintains a buffer of historical global models.
These models are aggregated through parameter averaging to form the global ensemble
model. This aggregated model encapsulates a more comprehensive representation of global
knowledge.

Figure 5. Overview of the FedGKD framework. The historical global models stored in the server buffer are

aggregated into an ensemble model, which is broadcast to clients for local training. The clientsdistill the global
knowledge into their local models through a combination of CE and KL losses.

COBOL
Grant agreement no: P20224K9EK 15

2. Knowledge Distillation to Local Models: The ensemble global model is distributed to
the participating clients. On the client side, the distillation process involves minimizing a
combination of cross-entropy (CE) loss and Kullback-Leibler (KL) divergence loss, as shown
in the equations:

where represents the local model, is the global model in round t, and denotes the 𝑤 𝑤
𝑡

ℎ
𝑘

logits of the model.
This two-stage process addresses the client-drift problem by ensuring that local models align
closely with global knowledge while maintaining flexibility for local adaptations. FedGKD
achieves these improvements without the need for additional privacy compromises or
substantial changes in the model architecture. Experimental evaluations on various datasets
demonstrate that FedGKD outperforms state-of-the-art baselines in terms of both accuracy
and convergence speed, particularly in scenarios with high data heterogeneity. This makes it
a versatile and effective solution for practical federated learning deployments.

4.6 Low Node Selection in Federated (LCNSFL, 2024)

LCNSFL (Low Node Selection in Federated Learning) addresses the challenges of non-IID
data distributions and resource constraints in smart cities through a novel proximity-based
node selection strategy within the Space-Air-Ground Information Network (SAGIN). This
approach specifically targets environments characterized by diverse IoT devices with varying
communication and computational resources, with the aim of reducing federated training
time and energy costs while improving global model convergence and accuracy.
The proposed framework leverages near-edge optimization to prioritize IoT devices closer to
the network edge for participation in federated training. This strategy reduces latency and
transmission costs by decreasing the reliance on devices with weaker connections to the
central server. By carefully selecting nodes based on their proximity and computational
capacity, LCNSFL ensures efficient resource utilization and robust performance of the global
model.
The workflow of LCNSFL, depicted in Figure 6, begins with the initialization of device
information and the downloading of the global model to participating devices. Subsequently,
the server collects information about the status of the system, such as the operational state
of the device and the network conditions, which are input into an actor network. The actor
network evaluates and ranks devices based on their action probabilities, selecting the top-K
devices for participation in the current training round.Top-K Selection: In LCNSFL, the top-K
selection mechanism identifies the most suitable K devices from a larger pool of available
nodes for participation in a given training round. These devices are ranked on the basis of
their action probabilities. The ranking criteria include factors such as proximity to the network
edge, computational power, battery level, and quality of the connection. By selecting the top
K devices, LCNSFL ensures efficient utilization of resources, reduces latency, and improves
the overall effectiveness of the federated learning process. These selected devices perform
local training, after which the server aggregates the updated models to refine the global

COBOL
Grant agreement no: P20224K9EK 16

model. This iterative process continues until the global model achieves the target accuracy,
optimizing training efficiency while maintaining high accuracy in heterogeneous settings.

Figure 6. Workflow of LCNSFL for federated learning node selection based on near-edge optimization.

The experimental results, as described in [10], demonstrate that LCNSFL performs better
compared to traditional methods such as random selection and FedProx. Specifically,
LCNSFL significantly reduces communication rounds, energy costs, and overall training time
in scenarios with varying degrees of non-IID data distributions. This efficiency makes it an
ideal solution for federated learning in large-scale networks, particularly in smart cities where
communication and computational resources are limited.

4.7 Federated Learning with Adaptive Weighted Model Aggregation (FLAMA, 2023)

FLAMA was introduced in [11] and is a dynamic approach to address the challenges of data
heterogeneity and model convergence in federated learning systems. Unlike traditional
aggregation strategies, FLAMA adapts model aggregation weights in each training round
based on the usefulness of the data samples provided by each node. This mechanism

COBOL
Grant agreement no: P20224K9EK 17

ensures that nodes contributing more relevant data—such as recent user interactions in
recommendation systems are prioritized, thereby improving the global model’s accuracy and
convergence efficiency.
Key Components of FLAMA: As illustrated in Figure 7, the FLAMA framework operates in
two main stages:
1. Useful Data Rate (UDR) Reporting: Each client calculates its Useful Data Rate (UDR),
which represents the proportion of data samples considered relevant for training in the
current round. This UDR value, along with the model updates, is sent to the server.
2. Adaptive Weight Calculation: The server uses the UDR values to calculate aggregation
weights for each client. Clients with higher UDR values are assigned larger aggregation
weights, ensuring that their contributions are emphasized in the global model aggregation.
The server also performs a global model accuracy test and adjusts the minimum aggregation
weight (minAW) to balance the representation of useful and normal data.

Figure 7. The FLAMA framework: Adaptive weighted model aggregation based on useful data rates (UDR) to

prioritize informative client contributions.

Aggregation Weight Adjustment: FLAMA employs a dynamic adjustment mechanism for
the minimum aggregation weight (minAW). If the global model shows bias toward either
useful or normal data, the server modifies minAW to correct this imbalance. This ensures
that both special and normal clients are adequately represented in the training process,
thereby maintaining fairness and optimizing model performance.
Performance Benefits: Experimental results demonstrate that FLAMA achieves a
significant improvement in model accuracy compared to FedAvg and other fixed-weight
aggregation methods. By prioritizing useful data through the UDR metric, FLAMA reduces
the number of training rounds needed for convergence while maintaining robust performance
across diverse client data distributions. FLAMA’s dynamic adaptation of aggregation weights
ensures that federated learning systems can efficiently handle data heterogeneity while
achieving rapid convergence and high model accuracy, making it a valuable solution for
modern federated learning challenges

COBOL
Grant agreement no: P20224K9EK 18

COBOL
Grant agreement no: P20224K9EK 19

5 Empirical Evaluation
Experiments carried out so far within the project assess the effectiveness of various FL
strategies, particularly focusing on their capacity to manage data heterogeneity and optimize
computational and communication resources. This experimental campaign provides insights
into choosing the most efficient FL algorithm for our training process, since we expect
significant heterogeneity among the pictures taken by the users and model training must still
be completed as quickly as possible.
Our approach involved a comprehensive analysis of node selection and workload
optimization techniques within a FL framework, employing the Flower framework for
implementation and testing.
The experimental campaign is structured into three phases involving the training of
increasingly complex classification models against increasingly challenging datasets, as
summarised in the following:

● Phase 1: Multilayer Perceptron (MLP) model, MNIST dataset.
● Phase 2: Convolutional Neural Network (CNN), cifar-10 dataset.
● Phase 3: ResNet18 model, TACO dataset.

5.1 Phase 1: Design of Experiments

Our experimental setup utilized a multilayer perceptron (MLP) model trained on the MNIST
dataset, which is standard for benchmarking FL algorithms due to its simplicity and suitability
for illustrating the challenges of non-IID data distribution. We implemented four node
selection algorithms: Dynamic Sampling, pow-d, cpow-d, and rpow-d, alongside the FedAvg
algorithm as a baseline for comparison. For workload optimization, we explored four
techniques: Static Optimizer, Uniform Optimizer, Round Time Optimizer, and Equal
Computation Time Optimizer.
Each node in our federated network was simulated to have varying computational
capabilities and data availability, reflecting a realistic environment where devices such as
smartphones and tablets contribute to the learning process. The diversity in node capability
and data distribution allowed us to test the pros and cons of each strategy under different
levels of system and statistical heterogeneity.

5.2 Phase 1: Results

Our findings revealed that dynamic node selection strategies improved the convergence
speed and model accuracy over the baseline FedAvg approach. These strategies effectively
addressed the non-IID nature of data distribution by prioritizing nodes that would most
benefit global model updates at each training round.
Workload optimization strategies showed varying degrees of success in managing
computational resources efficiently. The Round Time Optimizer emerged as particularly
effective, optimizing the allocation of computational tasks based on the capabilities of each
node, thereby reducing bottlenecks and improving overall system efficiency.

COBOL
Grant agreement no: P20224K9EK 20

Figure 8. Accuracy evolution over training rounds (for both alpha= 0.5 and 100).

However, the numerical result from the simulations showed that the performance of a
specific algorithm compared to others can be different depending on the level of
heterogeneity of the data distribution as shown in Figure 8 which shows that dynamic
sampling reached faster convergence of the model when the data are more distributed in iid,
but was slower when the data are not distributed in iid.
While for the workload optimizers there was a type of trade between the highest accuracy
achieved and the required training time, the training time is a very important metric in
scenarios where the nodes are not stables in terms of electrical power or connection links.
Table 1 shows the numerical results of the different types of optimizers, in terms of accuracy
and max training time and the variance of the training time.

COBOL
Grant agreement no: P20224K9EK 21

Table 1. Workload optimization strategies (best results in bold).

5.3 Phase 2: Design of Experiments

Building on the initial findings from Phase 1[12], we expanded our experiments to include a
more complex model and a different dataset to further assess the robustness and scalability
of our federated learning strategies under various conditions. Feedback from peer reviews
highlighted the need to explore additional models and datasets to deepen our understanding
of the effectiveness of these strategies which also align with the nature of COBOL project
requiring a deep neural network model.
To this end, we employed a Convolutional Neural Network (CNN), designed to handle
complex image data more effectively. This CNN consists of multiple convolutional and
pooling layers, interspersed with dropout layers to combat overfitting. We trained this model
using the cifar-10 dataset, which presents more complexity than MNIST dataset used in
Phase 1, providing a challenging environment for evaluating our FL approaches.
The CNN architecture was defined as follows:
• Three convolutional layers, each accompanied by varying rates of dropout.
• A final stage of global average pooling followed by dense layers, tasked with classifying
images into ten distinct categories.
A configurable Latent Dirichlet Allocation (LDA) distribution based on parameter DirK(α) can
be used to construct heterogeneous data partitions among nodes, where parameter α
controls the degree of data heterogeneity. If α → ∞, all clients have identical distribution. If α
→ 0, each client holds samples from only one class [12]. We conducted the experiments
across a spectrum of heterogeneity levels:
• Alpha = 0.5 and Alpha = 1, corresponding to scenarios with high heterogeneity.
• Alpha = 10 and Alpha = 100, corresponding to lower heterogeneity.

COBOL
Grant agreement no: P20224K9EK 22

5.4 Phase 2: Results

Figure 9. Test accuracy comparison when alpha = 0.5.

Figure 10. Test accuracy comparison when alpha = 100.

Our findings indicated that while the dynamic sampling strategy achieved faster convergence
comparing centralized test accuracies with other algorithms, in simple model training as
shown in [12], it did not have the same result with the complex CNN model as shown in
Figures 9 and 10 which show the test accuracy evolution over the training rounds, and the
training loss. The pow-d strategy and its variants, which prioritize the nodes expected to offer
the most useful information, showed superior performance at all levels of heterogeneity.
The diverse results obtained from the CIFAR-10 dataset with a complex CNN model
compared to Phase 1 results showed the necessity of an advisory system to guide the
selection of the most suitable federated learning algorithm based on specific conditions for
each situation. Performance variations highlight the influence of multiple factors, including
task complexity, network size, and data distribution among nodes. This variability
emphasizes the importance of tailored algorithm selection to optimize performance in
different federated learning scenarios.

COBOL
Grant agreement no: P20224K9EK 23

5.5 Phase 3: Design of Experiments

The purpose of Phase 3 is to to train a complex deep neural network (ResNet18) to classify
images containing litter and clean background. These experiments were done to extend the
results obtained by [1] and prove that FL achieves similar accuracy results compared to the
centralized training setting with a deep model and a more complex classification problem.
The dataset is a set of image crops taken from TACO dataset classified as litter or
background. The crops are already resized to 224x224 which is a common input size for
many CNN architectures (ResNet18 included). The dataset was divided into seven distinct
parts, each representing a different node in our federated learning model. This division was
intentionally designed to simulate the potential heterogeneity among nodes, with each part
containing different types of background and different numbers of data samples.
We initiated training the ResNet18 model from scratch in a federated setting. The model was
trained for 100 rounds of training, mirroring the real-world scenario where multiple nodes
contribute to the learning process without sharing their local data. For comparison, we also
trained the ResNet18 model using all the data collected in a centralized manner.
Both sets of experiments (federated and centralized) were done under identical training
conditions to maintain consistency and fairness in evaluation:
• Number of Training (Rounds, Epochs): 100
• Batch Size: 32
• Learning Rate: 0.001
Due to computational limitations, the FL simulation involved selecting 5 out of the 7 nodes in
each training round (using the baseline algorithm ’FedAVG’). This approach simulates a real
life situation were the node’s connection link might drop down and highlights the ability of FL
to converge even when the environment is not perfect.

5.6 Phase 3: Results

The outcomes of these experiments were similar in terms of test accuracy, demonstrating
that the FL model could achieve nearly equivalent performance to the centralized model,
despite the inherent challenges of partial node participation and data heterogeneity.
Figure 11 shows the performance of FL compared to traditional centralized training, also in
the presence of heterogeneity and with some nodes’ connections dropping during training.

COBOL
Grant agreement no: P20224K9EK 24

Figure 11. Test accuracy comparison between centralized and federated settings.

COBOL
Grant agreement no: P20224K9EK 25

6 Selecting the Right Federated Learning Approach

Selecting the appropriate FL algorithm based on the specific requirements and constraints of
the environment is crucial. To support this process, we created a structured decision-support
system (specifically, a decision tree) that outlines the key trade-offs and performance
characteristics of different algorithms. The decision tree guides stakeholders toward
informed decisions when deploying FL systems in diverse and potentially
resource-constrained environments. By highlighting the core attributes of each algorithm, the
decision tree identifies the most suitable approach based on key questions regarding
potential application-specific concerns.
As an initial step toward the decision tree, we collate state-of-the-art FL algorithms and
summarise their strengths and potential weaknesses. This analysis lays the foundation for a
more detailed and comprehensive study.
As a starting point, we evaluate three key factors: communication efficiency, computational
load, and the ability to handle data heterogeneity. By categorizing and comparing these
algorithms, we assess the trade-offs of different FL deployments.

Table 2. State-of-the-art FL algorithms comparison against the selected key factors.

COBOL
Grant agreement no: P20224K9EK 26

As shown in Table 2, each algorithm offers unique advantages and faces potential limitations
depending on the context of its deployment. By understanding these characteristics, our aim
is to develop a more advanced advisory system in future studies that can guide stakeholders
in selecting the optimal algorithm for their specific use case.

Figure 12. The proposed decision tree for selecting the best algorithm based on the sorted concerns.

COBOL
Grant agreement no: P20224K9EK 27

8 Conclusion

The results of our study highlight the potential of advanced node selection and workload
optimization strategies to enhance the performance and scalability of FL systems. By
tailoring the FL process to the specific characteristics of the nodes and the data they hold,
we can achieve faster convergence rates, more accurate models, more efficient use of
network resources, and faster training time.
One of the key takeaways from this study is that no single algorithm is universally optimal
across all FL applications. Instead, the choice of algorithm should be guided by the specific
constraints and objectives of the deployment environment, including data distribution,
network conditions, and the computational capabilities of participating nodes. By choosing
the right FL algorithm and adapting it to the specific needs of the application, it becomes
feasible to create a sustainable and efficient framework not only for COBOL but also for a
wide range of future projects where federated learning can play a transformative role. This
adaptability ensures that FL remains a viable solution for modern distributed systems,
fostering innovation and efficiency in a variety of fields.

COBOL
Grant agreement no: P20224K9EK 28

COBOL
Grant agreement no: P20224K9EK 29

7 References
1- McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017).
Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics (pp. 1273–1282).

2- Yang, Qiang, et al. "Federated machine learning: Concept and applications." ACM
Transactions on Intelligent Systems and Technology (TIST) 10.2 (2019): 1-19.

3- Ye, Mang, et al. "Heterogeneous federated learning: State-of-the-art and research
challenges." ACM Computing Surveys 56.3 (2023): 1-44.

4- Nori, M. K., Yun, S., & Kim, I.-M. (2021). Fast federated learning by balancing
communication trade-offs. IEEE Transactions on Communications, 69(8), 5168–5182.

5- Wang, H.-P., Stich, S., He, Y., & Fritz, M. (2022). Progfed: Effective, communication, and
computation efficient federated learning by progressive training. In International conference
on machine learning (pp. 23034–23054).

6- Li, T., Sahu, A. K., Sanjabi, M., Zaheer, M., Talwalkar, A., & Smith, V. (2018). On the
convergence of federated optimization in heterogeneous networks. arXiv preprint
arXiv:1812.06127 .

7- Liu, Y., Su, L., Joe-Wong, C., Ioannidis, S., Yeh, E., & Siew, M. (2023). Cache-enabled
federated learning systems. In Proceedings of the twenty-fourth international symposium on
theory, algorithmic foundations, and protocol design for mobile networks and mobile
computing (pp.1–11).

8- Wang, B., Lu, T., Guo, W., Chang, S., Liu, G., Huang, Q., & Yang, P. (2022). Multi-center
federated learning with model decoupling. In 2022 3rd international conference on computer
science and management technology (iccsmt) (pp. 450–455).

9- Yao, D., Pan, W., Dai, Y., Wan, Y., Ding, X., Yu, C., . . . Sun, L. (2023). Fedgkd: Towards
heterogeneous federated learning via global knowledge distillation. IEEE Transactions on
Computers.

10- Wang, W., Li, P., Li, S., Zhang, J., Zhou, Z., Wu, D. O., . . . Gong, P. (2024). Optimizing
proximity strategy for federated learning node selection in the space-air-ground information
network for smart cities. IEEE Internet of Things Journal, 1-1. doi:
10.1109/JIOT.2024.3416943

COBOL
Grant agreement no: P20224K9EK 30

11- Wang, R. (2023). Federated learning with adaptive weighted model aggregation. In 2023
ieee/acm 31st international symposium on quality of service (iwqos) (p. 1-2). doi:
10.1109/IWQoS57198.2023.10188800

12- Baresi, L., Dolci, T., & Wehbe, I. (2024). On assessing heterogeneity management
solutions in federated learning systems. In 4th workshop on distributed machine learning for
the intelligent computing continuum (dml-icc). Retrieved from
https://www.lrc.ic.unicamp.br/dml-icc/ (Inconjunction with IEEE/ACM UCC 2024, December
16–19, Sharjah, UAE)

COBOL
Grant agreement no: P20224K9EK 31

	1 Introduction
	2 Federated Learning: Step-by-Step Overview
	3 Heterogeneity Management
	3.1 Types of Heterogeneity
	3.2 Managing Data Distribution Heterogeneity
	3.3 Addressing Model and Communication Heterogeneity

	4 State of the Art
	4.1 Fast Federated Learning 'FFL' (2021)
	4.2 Progressive Federated Learning ’ProgFed’ algorithm (2022)
	Feedforward Networks
	U-nets
	Results and Impact

	4.3 Cache-Enabled Federated Learning (CacheFL, 2023)
	4.4 FedMDC: Multicenter Federated Learning with Model Decoupling
	
	4.5 FedGKD: Federated Global Knowledge Distillation
	4.6 Low Node Selection in Federated (LCNSFL, 2024)
	4.7 Federated Learning with Adaptive Weighted Model Aggregation (FLAMA, 2023)

	5 Empirical Evaluation
	5.1 Phase 1: Design of Experiments
	5.2 Phase 1: Results
	5.3 Phase 2: Design of Experiments
	5.4 Phase 2: Results
	5.5 Phase 3: Design of Experiments
	5.6 Phase 3: Results

	6 Selecting the Right Federated Learning Approach
	8 Conclusion
	
	7 References

