
 
 

Int 
 
 
 
  
 

COmmunity-Based Organized Littering 
PRIN: PROGETTI DI RICERCA DI RILEVANTE 
INTERESSE NAZIONALE  
Bando 2022 PNRR 
 
 

Deliverable D6.1 
A decentralized, trusted framework inspired by federated 
and peer-to-peer systems, with proper APIs/connectors 
for the proficient use of the solution 
 
https://prin-cobol.github.io 

 
 

  

https://cobol.github.io


 
 
Project Number : P20224K9EK 
Project Title : COBOL: COmmunity-Based Organized Littering 

 

 
Deliverable Number : D6.1 
Title of Deliverable :  A decentralized, trusted framework inspired by federated 

and peer-to-peer systems, with proper APIs/connectors 
for the proficient use of the solution 

Nature of Deliverable :  Report / Other  
Dissemination level :  Public 
License :  Creative Commons Attribution 3.0 License 
Version : 1.0 
Contractual Delivery Date :  M12 
Contributing Objective/Task :  O6/Tx.y 
Editor(s) :  Leonardo Mariani (UNIMIB) 
Author(s) :  Luciano Baresi (PoliMI), Simone Bianco (UniMIB), 

Amleto Di Salle (GSSI), Ludovico Iovino (GSSI), Daniela 
Micucci (UniMIB), Leonardo Mariani (UniMIB), Luciana 
Brasil Rebelo dos Santos (GSSI), Maria Teresa Rossi 
(UniMIB), Raimondo Schettini (UniMIB) 

 
 

  
COBOL   
Grant agreement no: P20224K9EK 1 

http://creativecommons.org/licenses/by/3.0/


 
 

Glossary, acronyms & abbreviations  

Item Description 
COBOL COmmunity-Based Organized Littering 
FL Federated Learning 
DNN Deep Neural Network 
CNN Convolutional Neural Network 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 
 

 

  
COBOL   
Grant agreement no: P20224K9EK 2 



 
Table of Contents 
 
1 Introduction......................................................................................................................... 4 
2 Federated Learning: Step-by-Step Overview................................................................................. 6 
3 Heterogeneity Management............................................................................................................. 7 

3.1 Types of Heterogeneity.............................................................................................................. 7 
3.2 Managing Data Distribution Heterogeneity................................................................................ 7 
3.3 Addressing Model and Communication Heterogeneity..............................................................8 

4 State of the Art................................................................................................................................ 10 
4.1 Fast Federated Learning 'FFL' (2021)..................................................................................... 10 
4.2 Progressive Federated Learning ’ProgFed’ algorithm (2022).................................................. 11 

Feedforward Networks....................................................................................................... 12 
U-nets.................................................................................................................................12 
Results and Impact............................................................................................................ 12 

4.3 Cache-Enabled Federated Learning (CacheFL, 2023)............................................................13 
4.4 FedMDC: Multicenter Federated Learning with Model Decoupling......................................... 14 
4.5 FedGKD: Federated Global Knowledge Distillation................................................................. 15 
4.6 Low Node Selection in Federated (LCNSFL, 2024).................................................................16 
4.7 Federated Learning with Adaptive Weighted Model Aggregation (FLAMA, 2023)...................18 

5 Empirical Evaluation.......................................................................................................................20 
5.1 Phase 1: Design of Experiments..............................................................................................20 
5.2 Phase 1: Results......................................................................................................................20 
5.3 Phase 2: Design of Experiments..............................................................................................22 
5.4 Phase 2: Results......................................................................................................................23 
5.5 Phase 3: Design of Experiments..............................................................................................24 
5.6 Phase 3: Results......................................................................................................................24 

6 Selecting the Right Federated Learning Approach........................................................26 
8 Conclusion...................................................................................................................................... 28 
7 References......................................................................................................................... 30 
 

  
COBOL   
Grant agreement no: P20224K9EK 3 



 
1 Introduction 
This document addresses the problem of conceiving a decentralized, trusted framework for 
the proficient use of the Cobol solution. The main contribution of the document is towards the 
adoption of Federated (machine) Learning (FL) to allow for the proper consumption of the 
garbage images provided by users. 
In general, one can think of a solution in which users provide garbage-related pictures 
through their devices. Given the distributed nature of the context behind Cobol, a single 
centralized solution to analyze these data does not pay off. We need to envision a 
framework that can better adapt to the distributed nature of the problem and that also allows 
for flexibility and (future) extensibility. This is why Cobol has been working on the idea of 
adopting FL solutions to carry out the task, and compare them against more “standard”, 
centralized options. 
The adoption of a distributed solution is also a means to respect the privacy of data 
generators, that is, of the users who provide garbage pictures and also to address possible 
communication bottlenecks. The adoption of users' devices as the nodes of the federation 
would give the best solution for privacy preservation, but the distribution would be excessive 
and each node (user) would probably not contribute enough artifacts (images) to allow for 
proper local training. The federation would become too wide and too distributed, and we may 
also have problems with proper training on mobile devices. The adoption of intermediary 
nodes is a compromise that can help address both issues. The pictures are sent “only” to the 
trusted nodes, which act as concentrators and can carry out proper “localized” training. 
Users' devices are relieved from energy-eager activities, and we do not need to make 
training work on diverse mobile architectures. 
For the sake of standardization and also to get well-defined APIs almost free, we 
investigated the use of existing FL frameworks instead of developing a new hybrid solution. 
Some preliminary experiments suggested the use of Flower1 as the basis for the foreseen 
solution. The framework is widely used, comes with a well-crafted architecture, is supported 
by a big community, and is actively maintained: these are all fundamental elements for the 
sustainability of Cobol.  
Flower was also very helpful for carrying out the experiments, as it offered a simple, and 
easy to use and extend, sandbox to execute our experiments. Our main interest thus has 
been the study of different existing FL algorithms to select the nodes of the federation given 
the different requirements at hand. In general, the interest refers to the problem of managing 
heterogeneity in federated learning. Although it is clear that COBOL foresees a standard and 
static infrastructure, we wanted to study and compare the different existing solutions to have 
a complete landscape of the alternatives and be able to envision a preliminary decision tree 
that can help COBOL, but can also have wider applicability.  
This is the main part of the document. We started with some simple solutions and a simple 
dataset, and continue with more advanced and recent solutions and more appropriate 
datasets. As mentioned above, we also wanted to study the differences between centralized 
and distributed (federated) solutions, and we did this exercise with the garbage dataset 
contributed by the project itself and pave the ground for realistic evaluations that can be 
used in the context of the project. 
The rest of the document is organized as follows:  

● Section 2 provides an overview of the FL process;  
● Section 3 details the issue of heterogeneity management;  

1 https://flower.ai  
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● Section 4 surveys state-of-the-art FL algorithms;  
● Section 5 reports on our experimental campaign;  
● Section 6 presents a decision-support tree to select a FL solution;  
● Section 7 concludes. 
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2 Federated Learning: Step-by-Step Overview 
 
FL is a machine learning framework addressing, among others, the challenge of data privacy 
by allowing collaborative model training across multiple devices. This approach enables 
participants to construct a common (global) machine learning model without sharing data 
among themselves or with the server, leading to a data privacy preserving algorithm. 
Instead, their devices locally process the data, compute updates, and only send the model 
updates to a central server, ensuring that personal photos never leave the user’s device. 
This privacy reserving approach is crucial in fostering user trust and increasing engagement 
within the community. When participants feel assured that their data remains private, they 
are more likely to participate by uploading photos of littered areas, enriching the data set, 
and improving the model performance. 
McMahan et al. [1] introduced the concept of Federated Learning. It was developed to 
improve the performance of data-driven models under the constraints of data privacy laws, 
which cannot be preserved in typical centralized machine learning setups. The initial 
motivation was to enable smart edge devices, like mobile phones, to collaboratively learn a 
global prediction model while keeping all training data on the same device. 

 
Figure 1. FL process overview.[2] 

The steps of the baseline federated algorithm (FedAVG) as explained by [1] are shown in 
Figure 1 and summarised in the following: 

1. Sending models (or model updates): the server shares an initial model (which can 
be empty) with a fraction of nodes (step 3 in Figure 1). 

2. Updating models: a model is trained locally on multiple nodes (step 4 in Figure 1). 
Each node processes its own data locally to update the model’s parameters. 

3. Sending encrypted gradients: after local training, only the model updates (weights 
or gradients) are sent back to the server (step 1 in Figure 1).  

4. Secure aggregation: the server aggregates these updates to improve the global 
model, which is then sent back to the nodes for further training. 

The process of local training, model aggregation, and redistribution of the updated model 
continues across several rounds, enhancing the model’s accuracy with each iteration. 
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3 Heterogeneity Management 
 
FL introduces significant challenges due to the inherent heterogeneity of its decentralized 
architecture. This heterogeneity appears across various dimensions, which complicates the 
training and efficiency of federated models. 
 
3.1 Types of Heterogeneity 

In FL systems, we have many types of heterogeneity, Ye et al. [3] described some of these 
types: 

● Statistical Heterogeneity: The data distribution across nodes is often 
Non-Independently and Identically (Non-IID), leading to divergent model updates and 
impacting overall model accuracy. This inconsistency can cause models to forget 
what they have already learned or not be able to learn some patterns (rare samples in 
a passive node). Addressing this is crucial for optimizing the performance and 
efficiency of federated learning systems. 

● Communication Heterogeneity: Variability in network environments affects 
communication efficiency. Nodes with slower connections may significantly delay the 
aggregation process, sometimes leading to the discarding of model updates from 
these nodes. Employing strategies to manage this heterogeneity ensures the 
continuity and efficiency of the global model training, and ensures the participating of 
all the possible nodes. 

● Device Heterogeneity: Differences in computational power and storage among 
devices can lead to uneven training times and updates. This often results in a training 
bottleneck, where slower devices delay the overall training process, highlighting the 
need for scalable and adaptive federated learning solutions. 

● Model Heterogeneity: Nodes may use models of differing complexities to suit local 
computational capabilities or specific tasks, which will force flexible aggregation 
methods that can handle diverse model architectures. The aggregation process must 
be adaptive to the model’s complexity and the nature of the data processed, ensuring 
that federated learning can be made more robust and scalable. 

 
3.2 Managing Data Distribution Heterogeneity 

The primary concern in FL, particularly from a data perspective, is the non-IID nature of data 
across different clients. Techniques to manage this include: 

● Node Selection Strategies: Usually, the server chooses randomly a fraction of nodes 
to train the model locally at each round, some research shows that there are more 
effective ways to make this selection to overcome the problem of static heterogeneity. 

● Advanced Aggregation Algorithms: Employing sophisticated aggregation methods 
that consider the amount and diversity of data each node contributes. This approach 
helps in creating a more representative and effective global model, enhancing the 
overall effectiveness of the learning process. 

● Data Augmentation and Synthetic Data Generation: These techniques enhance 
the representativeness and balance of the training data across nodes, helping to 
mitigate the effects of skewed data distributions and ensuring that the benefits of 
federated learning are fully realized. 
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3.3 Addressing Model and Communication Heterogeneity 

● Model Heterogeneity: To solve this problem, federated systems may incorporate 
meta-learning or multi-model training approaches that allow for personalized training 
while still contributing to collective knowledge. This enables each node to develop a 
model that is suitable to its specific data and computational context, thereby 
enhancing the adaptability and flexibility of the federated learning model.  

● Communication Heterogeneity: Strategies such as asynchronous updates and 
differential synchronization can be employed to ensure that slower nodes do not 
unnecessarily delay the learning process. These methods allow nodes to contribute 
updates based on their individual communication capabilities, thus maintaining the 
continuity and efficiency of the global model training 
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4 State of the Art 
 
Recent advancements in federated learning algorithms focus on optimizing communication 
and computation costs, managing heterogeneity, and enhancing model performance under 
various constraints. This section reviews several notable algorithms that represent the 
current state of the art in federated learning, detailing their approaches and contributions to 
the field. 
4.1 Fast Federated Learning 'FFL' (2021) 

FFL, or Fast Federated Learning [4], optimizes the federated learning process by 
dynamically balancing trade-offs between communication and computation and between 
communication and accuracy. It achieves this through innovative techniques like gradient 
compression and control over local updates, designed to speed up convergence while 
maintaining high accuracy. 

A key contribution of FFL is its ability to minimize the upper bound of the error during each 
training round by jointly and dynamically adjusting the local iteration count and the gradient 
compression factor. The error bound for the k-th round is defined as follows: 

 

Where:
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FFL particularly works best in environments where communication costs are a primary 
concern, making it highly suitable for large-scale privacy-preserving machine learning 
applications such as those involving IoT devices. This method addresses the critical 
challenges of high communication overhead by efficiently managing gradient transmissions 
and local updates, demonstrating superior performance in reducing data transfer costs 
compared to traditional methods. 

4.2 Progressive Federated Learning ’ProgFed’ algorithm (2022) 

ProgFed [5] introduces a progressive training framework for federated learning which 
reduces both computational and communication costs by incrementally increasing model 
complexity during training. This innovative approach exploits the natural stabilization of 
neural networks, starting with simpler, shallower submodels and gradually expanding to 
full-complexity models. This progressive growth allows significant savings in computational 
resources and communication overhead while maintaining high model performance. 

ProgFed divides the model into multiple overlapping partitions, with each partition 
corresponding to a stage of training. In each stage, a submodel, denoted as  , is trained 𝑀𝑠
independently with local supervision. As training progresses, these submodels are expanded 
into more complex models by incorporating additional layers or blocks. The training process 
includes the following stages: 

● Stage 1: Shallow Submodel Training 
The initial submodel  , consisting of the simplest blocks (  ) and a lightweight head 𝑀1 𝐸1
( ), is trained. This significantly reduces computation and communication costs, as 𝐺1
only a fraction of the total model parameters are involved. 

● Stage 2 to : Progressive Growing 𝑆
At each subsequent stage sss, the current submodel incorporates additional 𝑀𝑠 
blocks (  ) and an updated head (  ). The weights of previously trained blocks are 𝐸𝑠 𝐺𝑠
reused, ensuring continuity and efficient knowledge transfer. 

● Final Stage: Full Model Training 
Once the network reaches its full complexity ( ), end-to-end training is performed to 𝑀𝑠
fine-tune all layers. 

This approach is compatible with various federated learning optimizations, such as FedAvg 
[1] and FedProx [6], and can be extended to both feedforward architectures and complex 
models such as U-nets. 

 
Figure 2. Progressive Growing in Feed-forward Networks: the model expands stage by stage until the full 

model is achieved. 
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Figure 3. Symmetric Progressive Growing in U-nets: Both encoder and decoder are grown outward until the 

complete U-net model is trained. 

Feedforward Networks 

In feedforward networks, the network is progressively grown by training each submodel with 
localized supervision provided by temporary heads. These temporary heads are discarded 
once their corresponding stages are completed, and subsequent stages build upon the 
pre-trained layers. 

U-nets 

For U-nets, ProgFed adopts a symmetric growing strategy, where both the encoder and 
decoder are progressively expanded. Intermediate supervision is applied at each stage to 
effectively guide the training process. This strategy is particularly beneficial for segmentation 
tasks, where U-nets have demonstrated exceptional performance. 

Results and Impact 

ProgFed achieves significant savings in computational and communication costs without 
sacrificing performance. Key benefits include: 

● Up to 25% reduction in computation costs during classification tasks. 
● Up to 63% savings in communication costs in segmentation tasks. 
● Compatibility with existing compression techniques and federated optimizations. 

This innovative framework demonstrates its suitability for resource-constrained federated 
learning scenarios, such as IoT devices and medical imaging applications. Using the 
principles of progressive learning, ProgFed offers a flexible and efficient alternative to 
traditional federated learning approaches. 

4.3 Cache-Enabled Federated Learning (CacheFL, 2023) 

Liu et al. [7] introduced CacheFL which is a novel caching mechanism designed to enhance 
the efficiency of federated learning systems by reducing the total wall-clock training time, a 
critical metric in FL. Instead of requiring all clients to download the latest global model from 
the central server in every iteration, CacheFL allows a subset of clients to utilize cached, 
slightly old global models stored locally at edge devices or access points. This design 
significantly reduces communication overhead, particularly for clients with limited bandwidth 
or high communication latency. 
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The main innovation of CacheFL lies in its flexible caching strategy, which partitions clients 
into two groups: cache-enabled clients (K-cache), which use cached global models, and 
server-dependent clients (K-server), which rely on the latest global model. This partitioning 
mitigates the straggler effect, where slow clients delay the entire training process. By 
enabling cache-enabled clients to begin their local updates earlier with cached models, the 
per-iteration delay is reduced, thereby optimizing training efficiency. 

 
The CacheFL training process extends the traditional FedAvg algorithm by incorporating 
cache-enabled clients. As described in Algorithm 1, the initialization of the model for each 
client is determined by their group: server-dependent clients initialize with the latest global 
model, while cache-enabled clients use the previously cached global model. Local updates 
are performed using stochastic gradient descent (SGD), and the global model is updated on 
the server by aggregating the locally updated models. 
Key characteristics of CacheFL include: 
• Caching Strategy: The global model is stored in caches located at clients, access points, 
or the server, depending on the network topology. Cached models are updated at regular 
intervals, ensuring the upper limit of old models usage. 
• Trade-Off Management: While caching introduces some staleness in global models, the 
slight increase in the number of iterations is offset by the significant reduction in per-iteration 
delay. CacheFL carefully balances this trade-off to minimize the total training time. 
• Applicability: CacheFL is especially effective in scenarios with resource-constrained 
networks and heterogeneous client capabilities, as it reduces communication and 
computational overhead while maintaining convergence guarantees. 
Experimental results demonstrate that CacheFL achieves up to a 28% reduction in the per 
iteration delay compared to traditional FedAvg while maintaining competitive accuracy. This 
makes CacheFL particularly suitable for federated learning scenarios with constrained 
bandwidth and heterogeneous client environments. 
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4.4 FedMDC: Multicenter Federated Learning with Model Decoupling 

B. Wang et al. [8] address the challenges of data heterogeneity in federated learning by 
implementing a model decoupling framework designed to enable personalized model training 
while leveraging the advantages of a global model. FedMDC (the name of the new 
algorithm) enhances the handling of non-IID (non-independent and identically distributed) 
data across distributed clients by introducing a client clustering mechanism based on a 
low-dimensional representation of their data. By grouping clients into clusters, FedMDC 
creates local subglobal models, enabling better alignment with the statistical properties of the 
data at each client. 

 
Figure 4. The FedMDC framework: Stage one involves local feature extraction and aggregation, while stage 

two clusters clients based on data similarity and trains sub-global models. 

 
Framework Overview: The FedMDC framework operates in two key stages, as illustrated in 
Figure 4: 

• Stage One: Local End Pre-training. Clients locally pre-train feature extractors , , ... ,  𝑃
1

𝑃
2

𝑃
𝑘

using their private datasets. These pre-trained feature representations are uploaded to the 
server, where a global feature extractor is aggregated. This initial step reduces the 
heterogeneity among clients while preparing their local models for clustering. 
• Stage Two: Client Clustering and Submodel Training. Based on the uploaded feature 
representations, the server clusters clients into groups with similar statistical data properties. 
Each cluster trains a subglobal model tailored to its members. The server aggregates these 
subglobal models into a unified global model by combining intermediate representations ( , 𝑍

1
, ... ,  ). The resulting models are redistributed to clients for further refinement. Handling 𝑍

2
𝑍

𝑘
Non-IID Data: The clustering mechanism in FedMDC significantly mitigates the challenges 
posed by non-IID data. By grouping clients with similar data distributions, the algorithm 
ensures that local updates contribute more effectively to subglobal models. This decoupled 
training strategy allows for the creation of personalized models that maximize the utility of 
local data while maintaining compatibility with the global model. 
Communication Overhead: FedMDC introduces additional communication overhead due to 
the need for feature aggregation and client clustering. While this may increase 
communication costs compared to traditional methods, the clustering process and the use of 
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sub-global models offset these costs by significantly improving model convergence and 
reducing the overall training time. 

Applications and Benefits: FedMDC is particularly effective in environments requiring 
personalized models, such as healthcare and IoT applications, where the data distributions 
of the clients are highly variable. Experimental results demonstrate that FedMDC improves 
the performance of local models by aligning them more closely with their respective data 
distributions, achieving superior accuracy compared to baseline federated learning methods. 
 

4.5 FedGKD: Federated Global Knowledge Distillation 

FedGKD, or Federated Global Knowledge Distillation, addresses the challenge of client drift 
in heterogeneous federated learning environments through a novel global knowledge 
distillation approach [9]. By leveraging historical global models as teachers, FedGKD guides 
the training of local models to better align with the global objective, thereby mitigating the 
divergence caused by non-IID data distributions across clients. This innovative method 
improves the convergence rate of the global model and maintains high accuracy and 
robustness in federated settings characterized by significant data heterogeneity. 
FedGKD employs an ensemble-based knowledge distillation mechanism. Historical global 
models stored in the server buffer are aggregated to form an ensemble global model, which 
serves as a guide for local training. In each communication round, the ensemble model is 
broadcast to the participating clients. Clients utilize this ensemble model to refine their local 
training through knowledge distillation, minimizing the discrepancy between the output of the 
global ensemble model and the local models. This process ensures that local models 
capture diverse features while adhering to the global learning objective. 
Figure 5 provides an overview of the FedGKD system. The architecture consists of two main 
stages: 
1. Global Knowledge Ensemble: The server maintains a buffer of historical global models. 
These models are aggregated through parameter averaging to form the global ensemble 
model. This aggregated model encapsulates a more comprehensive representation of global 
knowledge. 

 
Figure 5. Overview of the FedGKD framework. The historical global models stored in the server buffer are 

aggregated into an ensemble model, which is broadcast to clients for local training. The clientsdistill the global 
knowledge into their local models through a combination of CE and KL losses. 
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2. Knowledge Distillation to Local Models: The ensemble global model is distributed to 
the participating clients. On the client side, the distillation process involves minimizing a 
combination of cross-entropy (CE) loss and Kullback-Leibler (KL) divergence loss, as shown 
in the equations: 

 

where  represents the local model,  is the global model in round t, and  denotes the 𝑤 𝑤
𝑡

ℎ
𝑘

logits of the model. 
This two-stage process addresses the client-drift problem by ensuring that local models align 
closely with global knowledge while maintaining flexibility for local adaptations. FedGKD 
achieves these improvements without the need for additional privacy compromises or 
substantial changes in the model architecture. Experimental evaluations on various datasets 
demonstrate that FedGKD outperforms state-of-the-art baselines in terms of both accuracy 
and convergence speed, particularly in scenarios with high data heterogeneity. This makes it 
a versatile and effective solution for practical federated learning deployments. 
 
4.6 Low Node Selection in Federated (LCNSFL, 2024) 

LCNSFL (Low Node Selection in Federated Learning) addresses the challenges of non-IID 
data distributions and resource constraints in smart cities through a novel proximity-based 
node selection strategy within the Space-Air-Ground Information Network (SAGIN). This 
approach specifically targets environments characterized by diverse IoT devices with varying 
communication and computational resources, with the aim of reducing federated training 
time and energy costs while improving global model convergence and accuracy. 
The proposed framework leverages near-edge optimization to prioritize IoT devices closer to 
the network edge for participation in federated training. This strategy reduces latency and 
transmission costs by decreasing the reliance on devices with weaker connections to the 
central server. By carefully selecting nodes based on their proximity and computational 
capacity, LCNSFL ensures efficient resource utilization and robust performance of the global 
model.  
The workflow of LCNSFL, depicted in Figure 6, begins with the initialization of device 
information and the downloading of the global model to participating devices. Subsequently, 
the server collects information about the status of the system, such as the operational state 
of the device and the network conditions, which are input into an actor network. The actor 
network evaluates and ranks devices based on their action probabilities, selecting the top-K 
devices for participation in the current training round.Top-K Selection: In LCNSFL, the top-K 
selection mechanism identifies the most suitable K devices from a larger pool of available 
nodes for participation in a given training round. These devices are ranked on the basis of 
their action probabilities. The ranking criteria include factors such as proximity to the network 
edge, computational power, battery level, and quality of the connection. By selecting the top 
K devices, LCNSFL ensures efficient utilization of resources, reduces latency, and improves 
the overall effectiveness of the federated learning process. These selected devices perform 
local training, after which the server aggregates the updated models to refine the global 
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model. This iterative process continues until the global model achieves the target accuracy, 
optimizing training efficiency while maintaining high accuracy in heterogeneous settings. 
 

 
Figure 6. Workflow of LCNSFL for federated learning node selection based on near-edge optimization. 

 
The experimental results, as described in [10], demonstrate that LCNSFL performs better 
compared to traditional methods such as random selection and FedProx. Specifically, 
LCNSFL significantly reduces communication rounds, energy costs, and overall training time 
in scenarios with varying degrees of non-IID data distributions. This efficiency makes it an 
ideal solution for federated learning in large-scale networks, particularly in smart cities where 
communication and computational resources are limited. 
 
4.7 Federated Learning with Adaptive Weighted Model Aggregation (FLAMA, 2023) 

FLAMA was introduced in [11] and is a dynamic approach to address the challenges of data 
heterogeneity and model convergence in federated learning systems. Unlike traditional 
aggregation strategies, FLAMA adapts model aggregation weights in each training round 
based on the usefulness of the data samples provided by each node. This mechanism 
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ensures that nodes contributing more relevant data—such as recent user interactions in 
recommendation systems are prioritized, thereby improving the global model’s accuracy and 
convergence efficiency. 
Key Components of FLAMA: As illustrated in Figure 7, the FLAMA framework operates in 
two main stages: 
1. Useful Data Rate (UDR) Reporting: Each client calculates its Useful Data Rate (UDR), 
which represents the proportion of data samples considered relevant for training in the 
current round. This UDR value, along with the model updates, is sent to the server. 
2. Adaptive Weight Calculation: The server uses the UDR values to calculate aggregation 
weights for each client. Clients with higher UDR values are assigned larger aggregation 
weights, ensuring that their contributions are emphasized in the global model aggregation. 
The server also performs a global model accuracy test and adjusts the minimum aggregation 
weight (minAW) to balance the representation of useful and normal data. 

 
Figure 7. The FLAMA framework: Adaptive weighted model aggregation based on useful data rates (UDR) to 

prioritize informative client contributions. 

 

Aggregation Weight Adjustment: FLAMA employs a dynamic adjustment mechanism for 
the minimum aggregation weight (minAW). If the global model shows bias toward either 
useful or normal data, the server modifies minAW to correct this imbalance. This ensures 
that both special and normal clients are adequately represented in the training process, 
thereby maintaining fairness and optimizing model performance.  
Performance Benefits: Experimental results demonstrate that FLAMA achieves a 
significant improvement in model accuracy compared to FedAvg and other fixed-weight 
aggregation methods. By prioritizing useful data through the UDR metric, FLAMA reduces 
the number of training rounds needed for convergence while maintaining robust performance 
across diverse client data distributions. FLAMA’s dynamic adaptation of aggregation weights 
ensures that federated learning systems can efficiently handle data heterogeneity while 
achieving rapid convergence and high model accuracy, making it a valuable solution for 
modern federated learning challenges 
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5 Empirical Evaluation 
Experiments carried out so far within the project assess the effectiveness of various FL 
strategies, particularly focusing on their capacity to manage data heterogeneity and optimize 
computational and communication resources. This experimental campaign provides insights 
into choosing the most efficient FL algorithm for our training process, since we expect 
significant heterogeneity among the pictures taken by the users and model training must still 
be completed as quickly as possible. 
Our approach involved a comprehensive analysis of node selection and workload 
optimization techniques within a FL framework, employing the Flower framework for 
implementation and testing. 
The experimental campaign is structured into three phases involving the training of 
increasingly complex classification models against increasingly challenging datasets, as 
summarised in the following: 

● Phase 1: Multilayer Perceptron (MLP) model, MNIST dataset. 
● Phase 2: Convolutional Neural Network (CNN), cifar-10 dataset. 
● Phase 3: ResNet18 model, TACO dataset.  

 
5.1 Phase 1: Design of Experiments 

Our experimental setup utilized a multilayer perceptron (MLP) model trained on the MNIST 
dataset, which is standard for benchmarking FL algorithms due to its simplicity and suitability 
for illustrating the challenges of non-IID data distribution. We implemented four node 
selection algorithms: Dynamic Sampling, pow-d, cpow-d, and rpow-d, alongside the FedAvg 
algorithm as a baseline for comparison. For workload optimization, we explored four 
techniques: Static Optimizer, Uniform Optimizer, Round Time Optimizer, and Equal 
Computation Time Optimizer. 
Each node in our federated network was simulated to have varying computational 
capabilities and data availability, reflecting a realistic environment where devices such as 
smartphones and tablets contribute to the learning process. The diversity in node capability 
and data distribution allowed us to test the pros and cons of each strategy under different 
levels of system and statistical heterogeneity. 
 
5.2 Phase 1: Results 

Our findings revealed that dynamic node selection strategies improved the convergence 
speed and model accuracy over the baseline FedAvg approach. These strategies effectively 
addressed the non-IID nature of data distribution by prioritizing nodes that would most 
benefit global model updates at each training round. 
Workload optimization strategies showed varying degrees of success in managing 
computational resources efficiently. The Round Time Optimizer emerged as particularly 
effective, optimizing the allocation of computational tasks based on the capabilities of each 
node, thereby reducing bottlenecks and improving overall system efficiency. 
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Figure 8. Accuracy evolution over training rounds (for both alpha= 0.5 and 100). 

However, the numerical result from the simulations showed that the performance of a 
specific algorithm compared to others can be different depending on the level of 
heterogeneity of the data distribution as shown in Figure 8 which shows that dynamic 
sampling reached faster convergence of the model when the data are more distributed in iid, 
but was slower when the data are not distributed in iid. 
While for the workload optimizers there was a type of trade between the highest accuracy 
achieved and the required training time, the training time is a very important metric in 
scenarios where the nodes are not stables in terms of electrical power or connection links. 
Table 1 shows the numerical results of the different types of optimizers, in terms of accuracy 
and max training time and the variance of the training time. 
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Table 1. Workload optimization strategies (best results in bold). 

 
5.3 Phase 2: Design of Experiments 

Building on the initial findings from Phase 1[12], we expanded our experiments to include a 
more complex model and a different dataset to further assess the robustness and scalability 
of our federated learning strategies under various conditions. Feedback from peer reviews 
highlighted the need to explore additional models and datasets to deepen our understanding 
of the effectiveness of these strategies which also align with the nature of COBOL project 
requiring a deep neural network model. 
To this end, we employed a Convolutional Neural Network (CNN), designed to handle 
complex image data more effectively. This CNN consists of multiple convolutional and 
pooling layers, interspersed with dropout layers to combat overfitting. We trained this model 
using the cifar-10 dataset, which presents more complexity than MNIST dataset used in 
Phase 1, providing a challenging environment for evaluating our FL approaches. 
The CNN architecture was defined as follows: 
• Three convolutional layers, each accompanied by varying rates of dropout. 
• A final stage of global average pooling followed by dense layers, tasked with classifying 
images into ten distinct categories. 
A configurable Latent Dirichlet Allocation (LDA) distribution based on parameter DirK(α) can 
be used to construct heterogeneous data partitions among nodes, where parameter α 
controls the degree of data heterogeneity. If α → ∞, all clients have identical distribution. If α 
→ 0, each client holds samples from only one class [12]. We conducted the experiments 
across a spectrum of heterogeneity levels: 
• Alpha = 0.5 and Alpha = 1, corresponding to scenarios with high heterogeneity. 
• Alpha = 10 and Alpha = 100, corresponding to lower heterogeneity. 
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5.4 Phase 2: Results 

 
Figure 9. Test accuracy comparison when alpha = 0.5. 

 
Figure 10. Test accuracy comparison when alpha = 100. 

Our findings indicated that while the dynamic sampling strategy achieved faster convergence 
comparing centralized test accuracies with other algorithms, in simple model training as 
shown in [12], it did not have the same result with the complex CNN model as shown in 
Figures 9 and 10 which show the test accuracy evolution over the training rounds, and the 
training loss. The pow-d strategy and its variants, which prioritize the nodes expected to offer 
the most useful information, showed superior performance at all levels of heterogeneity. 
The diverse results obtained from the CIFAR-10 dataset with a complex CNN model 
compared to Phase 1 results showed the necessity of an advisory system to guide the 
selection of the most suitable federated learning algorithm based on specific conditions for 
each situation. Performance variations highlight the influence of multiple factors, including 
task complexity, network size, and data distribution among nodes. This variability 
emphasizes the importance of tailored algorithm selection to optimize performance in 
different federated learning scenarios. 
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5.5 Phase 3: Design of Experiments 

The purpose of Phase 3 is to to train a complex deep neural network (ResNet18) to classify 
images containing litter and clean background. These experiments were done to extend the 
results obtained by [1] and prove that FL achieves similar accuracy results compared to the 
centralized training setting with a deep model and a more complex classification problem. 
The dataset is a set of image crops taken from TACO dataset classified as litter or 
background. The crops are already resized to 224x224 which is a common input size for 
many CNN architectures (ResNet18 included). The dataset was divided into seven distinct 
parts, each representing a different node in our federated learning model. This division was 
intentionally designed to simulate the potential heterogeneity among nodes, with each part 
containing different types of background and different numbers of data samples. 
We initiated training the ResNet18 model from scratch in a federated setting. The model was 
trained for 100 rounds of training, mirroring the real-world scenario where multiple nodes 
contribute to the learning process without sharing their local data. For comparison, we also 
trained the ResNet18 model using all the data collected in a centralized manner. 
Both sets of experiments (federated and centralized) were done under identical training 
conditions to maintain consistency and fairness in evaluation: 
• Number of Training (Rounds, Epochs): 100 
• Batch Size: 32 
• Learning Rate: 0.001 
Due to computational limitations, the FL simulation involved selecting 5 out of the 7 nodes in 
each training round (using the baseline algorithm ’FedAVG’). This approach simulates a real 
life situation were the node’s connection link might drop down and highlights the ability of FL 
to converge even when the environment is not perfect. 
 
5.6 Phase 3: Results 

The outcomes of these experiments were similar in terms of test accuracy, demonstrating 
that the FL model could achieve nearly equivalent performance to the centralized model, 
despite the inherent challenges of partial node participation and data heterogeneity. 
Figure 11 shows the performance of FL compared to traditional centralized training, also in 
the presence of heterogeneity and with some nodes’ connections dropping during training. 
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Figure 11. Test accuracy comparison between centralized and federated settings. 
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6 Selecting the Right Federated Learning Approach 
 
Selecting the appropriate FL algorithm based on the specific requirements and constraints of 
the environment is crucial. To support this process, we created a structured decision-support 
system (specifically, a decision tree) that outlines the key trade-offs and performance 
characteristics of different algorithms. The decision tree guides stakeholders toward 
informed decisions when deploying FL systems in diverse and potentially 
resource-constrained environments. By highlighting the core attributes of each algorithm, the 
decision tree identifies the most suitable approach based on key questions regarding 
potential application-specific concerns.  
As an initial step toward the decision tree, we collate state-of-the-art FL algorithms and 
summarise their strengths and potential weaknesses. This analysis lays the foundation for a 
more detailed and comprehensive study. 
As a starting point, we evaluate three key factors: communication efficiency, computational 
load, and the ability to handle data heterogeneity. By categorizing and comparing these 
algorithms, we assess the trade-offs of different FL deployments. 

 
Table 2. State-of-the-art FL algorithms comparison against the selected key factors. 
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As shown in Table 2, each algorithm offers unique advantages and faces potential limitations 
depending on the context of its deployment. By understanding these characteristics, our aim 
is to develop a more advanced advisory system in future studies that can guide stakeholders 
in selecting the optimal algorithm for their specific use case. 

 
Figure 12. The proposed decision tree for selecting the best algorithm based on the sorted concerns. 
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8 Conclusion 
 
The results of our study highlight the potential of advanced node selection and workload 
optimization strategies to enhance the performance and scalability of FL systems. By 
tailoring the FL process to the specific characteristics of the nodes and the data they hold, 
we can achieve faster convergence rates, more accurate models, more efficient use of 
network resources, and faster training time.  
One of the key takeaways from this study is that no single algorithm is universally optimal 
across all FL applications. Instead, the choice of algorithm should be guided by the specific 
constraints and objectives of the deployment environment, including data distribution, 
network conditions, and the computational capabilities of participating nodes. By choosing 
the right FL algorithm and adapting it to the specific needs of the application, it becomes 
feasible to create a sustainable and efficient framework not only for COBOL but also for a 
wide range of future projects where federated learning can play a transformative role. This 
adaptability ensures that FL remains a viable solution for modern distributed systems, 
fostering innovation and efficiency in a variety of fields. 
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